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ABSTRACT: A generic parameter estimation algorithm was developed for the si­
multaneous extraction of multiple parameters from experimental or field obser­
vations. The basis of the method lies in the minimization of the variation between 
model predictions and observations via the iterative numerical determination of 
the functional minima of the model with respect to the parameters being deter­
mined. A multivariable Newton technique, and derivatives thereof, are used for 
this purpose. By relying on numerical differentiation in the iterative process, the 
technique is not limited by the model complexity, solution methodology, or scale 
of its domain. Model parameters have been estimated successfully for analytical 
and numerical solutions to dispersive and advective-dispersive particle transport 
model equations. The effect of sampling or measurement error and initial parameter 
estimates on algorithm performance has been evaluated. This approach has been 
successfully applied to determine data requirements and constraints (quantity, qual­
ity, and location) for measurement of hydrodynamic and transport characteristics 
of dye clouds and aquatic particles in laboratory-mixed settling columns. 

INTRODUCTION 

The affinity of many environmentally significant contaminants, including 
heavy metals and chlorinated hydrocarbons, for fine-grained sediments in 
aquatic systems is well-documented (Carpenter 1987; Elzerman and Coates 
1987; Rodgers 1983). Adequate representation of particle transport is there­
fore necessary if the fate of such contaminants is to be evaluated (Lee et 
al. 1981; Lick and Kang 1987). The particle transport mechanisms that need 
to be characterized in natural systems include fluid convection, Stokes set­
tling, Brownian diffusion, eddy dispersion, particle dispersion, flocculation, 
and differential settling (Hunt and Pandya 1984; Lick 1982; O'Melia 1972; 
Russel 1981). Contaminant interactions of import include sorption, desorp-
tion, and chemical reaction (Autenrieth 1986; Bonner et al. 1986). 

The ultimate objective of this work is the development, testing, and 
application of a framework for the estimation of model parameters from 
experimental or field data. The work presented in this paper was conducted 
in conjunction with an ongoing experimental effort (Bonner et al. in press 
1990; Ducharme 1989; Rorschach 1990; Sanders 1990; McCreary 1990) fo­
cusing on particle-mediated contaminant transport dynamics with emphasis 
on hydrodynamic transport, transport of heterogeneous particles, floccu­
lation and contaminant sorption/desorption. To maintain applicability as the 
experimental and modeling efforts progressed, a generic modular framework 
was developed, within which widely differing predictive models could be 
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implemented. Of paramount interest is the ability to simultaneously extract 
multiple parameter values from existing models with minimal modifications 
or rederivations. 

This paper focuses on the research conducted in the development of the 
basic framework, its application to hydrodynamic and particle transport 
models, and an evaluation of its effectiveness. The framework is evaluated 
purely in terms of its performance with respect to the applied models. 
General theoretical evaluation of parameter estimation with problem data 
can be found in Gawthrop (1984) and Stefanski (1985). 

APPROACH 

Dispersive Transport 
The initial application of the parameter estimation framework was to a 

single-parameter, one-dimensional dispersive transport model. Correspond­
ing to the first phase of the parallel experimental approach involving hy­
drodynamic characterization of a mixed settling column, the governing dif­
ferential equation used is 

d£ _ PC 
at ~ z dz 

= DZ^ (1) 

where C = the concentration of the dispersing species at any given time t 
and distance z; Dz = the hydrodynamic dispersion coefficient, which may 
be viewed as the cumulative effect of Brownian diffusion, eddy diffusion, 
and mechanical dispersion. With respect to the experimental effort, Dz 
indicates the dispersive tendency of a neutrally buoyant dye under the fol­
lowing boundary conditions 

dz 

dz 

= 0 
z = 0 

= 0 
z = h 

(2a) 

(2b) 

where h = the distance between the two boundaries. This was selected as 
2.0 m to conform with the aforementioned experiments. An impulse function 
was applied as the initial condition, to simulate actual experimental con­
ditions 

C(z,0) = Ce,8(z - 0 ) (3) 

where Ceq = the uniformly mixed concentration of the dispersing species. 

Advective-Dispersive Transport 
The one-dimensional advective-dispersive transport model was used as 

the basis for rigorous evaluation of the parameter estimation framework. 
It was also the model used in the preliminary analysis of data from the 
second phase of the corresponding experimental effort (Ducharme 1989; 
Sanders 1990; Bonner et al. 1990), particle transport studies in a mixed 
experimental settling column 

dC „ d2C dC ... 

H = D*J*~v'Tz (4) 
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with experiment specific boundary conditions 

Dz 

Dz 

dC 
dz 

dC 
dz 

= vzC\z=0 (5a) 

= 0 (5b) 

z = h 

and a uniform initial condition of 

C(z,0) = Ceq (6) 
where vz = the mean velocity of the dispersing species; Ceq = the uniform 
initial concentration; and h = the distance between the two boundaries. A 
useful nondimensional parameter indicating the relative dominance of ad-
vective and dispersive transport is the Peclet number, defined as 

»-% o 

Parameter Estimation 
All gradient-based nonlinear parameter estimation techniques require an 

initial educated guess for the parameter vector. This parameter vector is 
then iteratively modified by a parameter step vector until a specified stopping 
criterion is achieved. It is in the evaluation of the parameter step vector 
that the parameter estimation techniques differ. Each of the classical pa­
rameter estimation techniques has its advantages over the others, generally 
in the area of convergence rates and requisites for convergence. It is not 
uncommon to incorporate several of the classical estimation techniques into 
one algorithm, to ensure convergence under as many conditions as possible. 
Srinivasan and Aiken (1986) show that convergence restrictions for stiff 
problems can be overcome in some cases by reparameterizing or restruc­
turing the governing model. 

Possibly the most mathematically elegant gradient-based method is the 
Newton method (Bard 1974). Many of the gradient estimators are in fact 
simplifications or approximations to the Newton method. The Newton method 
requires the evaluation of the Hessian of the likelihood function as an 
indication of the gradient and direction toward the optimum parameter set 
and is used in the evaluation of the parameter step vector. 

The Gauss-Newton method is a simplification of the full Newton method, 
such that the second-order terms are neglected in the evaluation of the 
Hessian matrix. However, the Newton method is locally quadratically con­
vergent, while the Gauss-Newton does so only linearly. Further, the Gauss-
Newton method works best when the system of normal equations is quasi-
linear and the minimum value of the residual function is small (Dennis and 
Schnabel 1983). In the case of highly nonlinear problems with large residuals, 
this method is likely not to converge. 

Other popular methods include the damped Gauss-Newton, in which the 
parameter step vector 8fc is scaled down sufficiently to ensure local conver­
gence, even in highly nonlinear problems. This, however, decreases the rate 
of convergence even further. The Levenberg-Marquardt method is another 
adaptation of the Gauss-Newton method (Draper and Smith 1981), in which 
G is augmented to ensure better convergence in even large residual or highly 
nonlinear problems. The desired effect of the augmenting matrix in this 
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case is to replace the second derivative terms lost from the full Newton 
method. Although, with appropriate selection of the augmenting matrix, 
the Levenberg-Marquardt technique can approach the performance of the 
Newton method, algorithm control criteria can be computationally expen­
sive. 

The residual function is defined as the sum of the square of the differences 
between model predictions and the observations. For linear models, this 
function is then differentiated with respect to each of the free parameters, 
and the resulting set of equations, called normal equations, are explicitly 
solved in terms of the free parameters. 

When applied to a nonlinear model, the explicit nature of the solution 
of the parameter set is lost. The resulting normal equations in this case are 
nonlinear. Further, depending on the model being fitted, it is often the case 
that the normal equations cannot be derived. To maintain the generality of 
the methodology, numerical techniques are used to both derive and solve 
the normal equations. 

Derivation of the normal equations is most easily accomplished through 
the use of finite divided differences. The result can be expressed in functional 
form and implemented in an iterative root-finding scheme to locate the best 
estimate for the parameter set. Most iterative equation-solver techniques 
employ an initial estimate of the root, which is updated until a specified 
stopping criterion is reached. In the case of the dispersive transport model, 
only one parameter, Dz, is required to be estimated. Here, the experimental 
data can be expressed as functions of discrete space and time, corresponding 
to the sampling locations and frequency 

QbS , = Cobs(zhtj) (8) 

In addition, the mathematical model can be expressed similarly 

Both (8) and (9) are also functions of the free parameter Dz. The physical 
representation of Dz in the experimental data [(8)] may be related to the 
mixing intensity and represented mathematically as Dz in (9). These two 
functions can then be combined to create the residual function, which must 
then be a function of only Dz for any given observed data set 

Sr(Dz) = 2 (Cpredi - Cob,)2 (10) 
/ = i 

where n = the total number of observations. As there is only one parameter 
to be estimated, only one normal equation can be derived. This is accom­
plished by taking the derivative of the residual function with respect to Dz 
and setting it equal to zero 

(c - r \ pred' = o (ii) 

Eq. (11) constitutes the normal equation defining the optimum value of 
Dz. It is evident that only Cpredl is a function of the free parameter, and as 
such is the only term for which the derivative is required. For more complex 
models, the functional expression for Cpredi may not be analytically derivable, 
and may have to be treated as a black box. Therefore the method used to 
evaluate the derivative must be independent of the functional form. Finite 
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divided differences are used to this end. The derivative term is evaluated 
about the current parameter value by perturbing the function a value of 
±AD r 

d^pred, 

dDT 

Cpred,. (Z>* + ADZ) - Cpredl(D
k - ADZ) 

2ADZ
 KLl) 

This classical central difference scheme would require three model eval­
uations at any given parameter value for the evaluation of the normal equa­
tion—one at the current parameter value and one on either side of it. The 
higher-order of accuracy of this scheme is desired over the reduced com­
putational expense of forward or backward difference schemes. 

Location of the root of the normal equation is accomplished iteratively, 
using either the Newton-Raphson or secant methods 

Qk + 1 = T)k _ Sr{Dz) Q3X 

Dk+1 = Dk
z - S'r(D

k) 
Dk - Dk 

s'r(D
k) - s;(/)*-1). 

(14) 

Further simplification of the secant method to reduce the overall number 
of model runs per iteration was not implemented because both the possibility 
and rate of convergence would be excessively impaired, enough to preclude 
applicability to stiff problems. 

To generalize this method to multiple parameters, it was applied to the 
advective-dispersive transport model. Here, the free parameters are vz and 
Dz. The existing single-parameter framework was modified to incorporate 
an independent search (steepest ascent) algorithm. Here, each parameter 
was estimated successively, until they all met a preset stopping criterion. 
This algorithm provided a great deal of flexibility in independently con­
trolling the rate of convergence for each parameter. Such flexibility is desired 
in situations where model solution stiffness varies widely with each param­
eter. Overall convergence in this method is generally slower than it is if all 
parameters are updated simultaneously. Simultaneous solution of systems 
of nonlinear equations is effectively achieved via the Newton approach 

J(P*)8* = -[F(Pk)] (15) 

and 

P*+i = p* + 8 * (16) 

where [F(Pk)] represents the system of nonlinear equations being solved; 
J(Pk) = the matrix of partial derivative terms; P* = the parameter vector, 
and 8* is the parameter step vector. The superscript k indicates the current 
iteration level. 

Applying the generic parameter estimation methodology to a system of 
m parameters, the residual function can be expressed as 

Sr(PuP2,P3, . . ., Pm) = E (Cpred/ - Cobsiy (17) 
; = 1 

where P, represents the different parameters. From this, m normal equations 
can be derived 
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s ; = • 

a(sr)/a(Pi) 
d(sr)/a(P2) 

d(Sr)/d(Pm) 

. — -

h{pup2,p„ . 

MPlJlfs, • 

JmiPliPliPii • 

;Pm) 

;P,n) 

P ) 

(18) 

It is then necessary to simultaneously solve this system of equations for 
the optimum parameter set. Combining (15), (16), and (18), the following 
formulation is derived 

p*+l = p* + S^J*) - 1 

where 

(19) 

d2SJdP\ 92Sr/dPldP2 

d2Sr/dP2dP1 d2Sr/dP2
2 

32Sr/dPmdPl d2Sr/8PmdP2 

d2Sr/dPidP„ 

d2SrldP2dP„ 

d2Sr/dP2„ 

(20) 

Eq. (20) shows that the Jacobian matrix J, which holds the first derivatives 
of the normal equations (or the second derivatives of the residual function) 
is also the Hessian of the residual function. For any Newton iteration, 
therefore, it is necessary to evaluate the value of the residual function, and 
its first and second derivatives, at the current parameter set values. 

Finite divided differences are again used in evaluating both the first- and 
second-derivative terms. Residual function values are obtained by executing 
the predictive model with parameter values perturbed from the current 
parameter set to provide information to generate the finite divided differ­
ences. For a two parameter model, the residual function needs to be eval­
uated with eight perturbed parameter sets, excluding the current set, at each 
Newton iteration. In general, for m parameters, 2m additional model eval­
uations are needed to compute the first derivatives of the residual function, 
and 2m(m - 1) further evaluations are necessary for the second derivatives. 
The total number of model runs required per iteration for a model with m 
parameters is given by X 

X = 2m2 + 1 (21) 

The Gauss-Newton (Chapra and Canale 1988; Dennis and Schnabel 1983) 
method is a simplification of the classical Newton technique. The Gauss-
Newton analogy to (19) is 

vk + s'r
k(Gky (22) 
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The Jacobian matrix used in the full Newton method is replaced with a 
matrix G, which contains only the first derivative terms in (20) 

G = 

2) (dC/dPi)2 2 dC/ap, acidP2 
: = 1 / - l 

2 dC/dP2 dC/dP, 2 (dC/aP2)
2 

2 dC/dP„, SCIdP, 2 dC/8P2 dCldPx 

2 dc/dPi dc/dPm 

2 dc/dP2 dcidP,,, 

2 (sc/ap,,, 

. . . (23) 

and 

dC, pred/ 

dP, pf 

CPKdi(P? + Afi) - Cpred,(Pf - AP;) 
2AP, 

(24) 

The advantage of this method over that of Newton is that it requires fewer 
model evaluations per iteration 

2m + 1 (25) 

While the Newton method shows a quadratic increase in the required num­
ber of model runs per iteration, the computational effort increases only 
linearly in the Gauss-Newton method. 

All the iterative techniques discussed herein operate by adding to an initial 
guess for the set of parameter values with a parameter step vector, based 
on some criteria for convergence. Differences between algorithms occur 
only in the evaluation of the parameter step vector. This inherent modularity 
permits easy substitution of the desired technique for solving the system of 
normal equations. It is equally uncomplicated to add modules to permit 
switching between solution techniques based on user-specified performance-
based criteria. The parameter estimation algorithm used in this work in­
cluded implementations of the independent search algorithm, the full New­
ton method, and a bounding algorithm to restrict parameter values within 
user specified limits. 

Computer Experiments 
To evaluate the performance of the parameter estimation algorithm with 

the different predictive models, a series of computer experiments was con­
ducted on both a CRAY YMP/116 and a VAX 3100. An explicit finite 
difference (central) scheme was used to approximate the solution for both 
predictive models. A vertical settling column (Ducharme 1989) 197.5-cm 
tall was simulated with a fixed spatial grid and a dynamic time-step size to 
maintain solution stability. An analytical solution also was used for the 
dispersive transport model, but no perceptible difference was found in al­
gorithm performance. 

Box and Coutie (1956) proposed an approach to evaluating model be­
havior by relying on model-generated data to conduct sensitivity analyses 
on both model parameters and data reliability. A similar approach was taken 
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to evaluate the sensitivity of the coupled parameter estimation algorithm 
and predictive models to simulated problem data sets. 

In the context of this paper, the estimated parameter set is the set of 
parameters that produces the minimum residual function value for the given 
data set. If the data set used is model generated, then the estimated pa­
rameter set should be identical to the parameter set (herein referred to as 
true or modeled) used to generate that data, unless the noncontinuous nature 
(sparcity) of the data has an effect on the estimation results. 

The location of the true or modeled parameter set in the parameter 
domain will necessarily have an effect on the predictive model behavior. In 
the case of nonlinear terms, the effect is most likely to be in the stiffness 
of the solution surface. To characterize the resultant effect on the parameter 
estimation algorithm performance, the predictive model was used to gen­
erate several data sets over a range in the parameter sets that is considered 
environmentally significant. Residual function values were then determined 
in the vicinity of the true parameter set to provide a residual function surface. 
The gradient of the residual function surface at any prescribed parameter 
set is an indication of the driving force toward the true parameter set. 

Sampling or measurement error was simulated by randomly altering the 
concentrations predicted by the advective-dispersive transport model over 
a range in parameter sets that is considered environmentally significant. 
The maximum amplitudes ( ± 1 % , ± 5 % , ±10%, ±25%, and ±40%) of 
the random noise applied to the uncorrupted data were selected as a per­
centage of the uniform initial concentration (Ceil). For example, a random 
noise level of ±10% would force the corrupted data [C(z,0] to fall within 
the limits imposed by (26) 

C(z,t) = C(z,f) ± 0 . 1 x Ceq (26) 

Data sparcity was simulated by prescribing a data-sparcity level between 
0% and 25%, where 0% would indicate that all the uncorrupted data were 
used, and 100% signifying that none were used. Each data point in the 
uncorrupted data set was evaluated in turn, by generating a random number 
between 0 and 1 and comparing it with the prescribed data-sparcity level. 
If the generated random number was greater than the data-sparcity fraction, 
the corresponding data point was used in the estimation algorithm. Other­
wise, it was discarded. The uncorrupted data sets contained a total of 500 
data points in each case, so a sparcity level of 25% would result in the 
random elimination of approximately 125 data points from the initially reg­
ular grid of observations. This may be interpreted as the fraction of data 
that either was not collected or had to be rejected from a regularly gridded 
field or laboratory sampling scheme. 

It is evident that this method for characterizing data sparcity is heavily 
dependent on the sampling frequency and nature of the sampling grid for 
the uncorrupted data set. A more meaningful parameter is the resulting 
mean sampling frequency of the modified data set. In the case of a predictive 
model with one time and one space scale, this would be the average number 
of data points per unit time per unit length. 

RESULTS AND COMMENTS 

Dispersive Transport 
The residual function surface for the dispersive transport model [(1)] was 

evaluated at five different values of the modeled Dz, ranging over five orders 
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of magnitude. Fig. 1(a) shows the residual function approach zero at its 
corresponding true Dz. The convergence characteristics of the model at the 
specified Dz values (0.01,0.1,1.0,10.0, and 100.0 cm2/s) were then evaluated. 
This was accomplished by using the dispersive transport model to generate 
data at the specified Dz values. The parameter estimation technique [(14)] 
was then used to estimate the corresponding true Dz from initialized values 
of 10%, 50%, 75%, and 150% of the true parameter. 

Fig. 1(b) shows the correlation between the estimated Dz and its corre­
sponding modeled value. For the boundary and initial conditions specified 
in (2) and (3), large values of the Dz reduce the time to steady state for 
systems being modeled by (1). The effect of the increasing system dynamics 
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FIG. 1. Dispersive Transport Model: (a) Residual Function Value as Function of 
Dispersion Coefficient for Various Modeled Dispersion Coefficients; (b) Correlation 
between Model-Generated Data Set Parameters and Parameter Estimation Results 
for Various Initial Guesses; (c) Final Iteration Count for Estimated Parameter 
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to evaluate the sensitivity of the coupled parameter estimation algorithm 
and predictive models to simulated problem data sets. 

In the context of this paper, the estimated parameter set is the set of 
parameters that produces the minimum residual function value for the given 
data set. If the data set used is model generated, then the estimated pa­
rameter set should be identical to the parameter set (herein referred to as 
true or modeled) used to generate that data, unless the noncontinuous nature 
(sparcity) of the data has an effect on the estimation results. 

The location of the true or modeled parameter set in the parameter 
domain will necessarily have an effect on the predictive model behavior. In 
the case of nonlinear terms, the effect is most likely to be in the stiffness 
of the solution surface. To characterize the resultant effect on the parameter 
estimation algorithm performance, the predictive model was used to gen­
erate several data sets over a range in the parameter sets that is considered 
environmentally significant. Residual function values were then determined 
in the vicinity of the true parameter set to provide a residual function surface. 
The gradient of the residual function surface at any prescribed parameter 
set is an indication of the driving force toward the true parameter set. 

Sampling or measurement error was simulated by randomly altering the 
concentrations predicted by the advective-dispersive transport model over 
a range in parameter sets that is considered environmentally significant. 
The maximum amplitudes ( ± 1 % , ± 5 % , ±10%, ±25%-, and ±40%) of 
the random noise applied to the uncorrupted data were selected as a per­
centage of the uniform initial concentration (Cecj). For example, a random 
noise level of ± 10% would force the corrupted data [C(z,')] to fall within 
the limits imposed by (26) 

C(z,0 = C{z,t) ± 0.1 x Ceq (26) 

Data sparcity was simulated by prescribing a data-sparcity level between 
0% and 25%, where 0% would indicate that all the uncorrupted data were 
used, and 100% signifying that none were used. Each data point in the 
uncorrupted data set was evaluated in turn, by generating a random number 
between 0 and 1 and comparing it with the prescribed data-sparcity level. 
If the generated random number was greater than the data-sparcity fraction, 
the corresponding data point was used in the estimation algorithm. Other­
wise, it was discarded. The uncorrupted data sets contained a total of 500 
data points in each case, so a sparcity level of 25% would result in the 
random elimination of approximately 125 data points from the initially reg­
ular grid of observations. This may be interpreted as the fraction of data 
that either was not collected or had to be rejected from a regularly gridded 
field or laboratory sampling scheme. 

It is evident that this method for characterizing data sparcity is heavily 
dependent on the sampling frequency and nature of the sampling grid for 
the uncorrupted data set. A more meaningful parameter is the resulting 
mean sampling frequency of the modified data set. In the case of a predictive 
model with one time and one space scale, this would be the average number 
of data points per unit time per unit length. 

RESULTS AND COMMENTS 

Dispersive Transport 
The residual function surface for the dispersive transport model [(1)] was 

evaluated at five different values of the modeled Dz, ranging over five orders 
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of magnitude. Fig. 1(a) shows the residual function approach zero at its 
corresponding true Dz. The convergence characteristics of the model at the 
specified Dz values (0.01,0.1,1.0,10.0, and 100.0 cm2/s) were then evaluated. 
This was accomplished by using the dispersive transport model to generate 
data at the specified Dz values. The parameter estimation technique [(14)] 
was then used to estimate the corresponding true Dz from initialized values 
of 10%, 50%, 75%, and 150% of the true parameter. 

Fig. 1(b) shows the correlation between the estimated Dz and its corre­
sponding modeled value. For the boundary and initial conditions specified 
in (2) and (3), large values of the Dz reduce the time to steady state for 
systems being modeled by (1). The effect of the increasing system dynamics 
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can be seen in Figs. 1(b) and (c), where high values of Dz can be linked to 
poor correlation between the estimated and modeled Dzs [Fig. 1(b)], and 
an increase in the number of iterations required to achieve the tolerance 
level [Fig. 1(c)]. 

Further, as the modeled Dz increases in magnitude, the residual surface 
becomes less dynamic. It should be noted that both the X- and F-axes in 
Fig. 1(a) are scaled logarithmically, indicating that while the shape of the 
curves are similar over the different modeled £>zs, the derivatives of the 
residual functions with respect to Dz will vary logarithmically. This indicates 
that rates of convergence should decrease dramatically for increasingly dis­
persive systems. Fig. 2 shows the estimated Dz and the corresponding re­
sidual function value at each iteration for each of the five modeled parameter 
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values. For modeled Dzs of 10 cm2/s and more [Figs. 2(d) and (e)], the 
parameter estimation algorithm failed to reach the true Dz for all of the 
specified initial guesses. In fact, the normal equations are so nondynamic 
for these cases that virtually no change in either estimated Dz or residual 
function value can be perceived. Fig. 2(e) highlights this, in that the algo­
rithm has reached a threshold at which successive iterations produce no 
visible change in Dz or the residual function value. 

Convergence rates increased when the initial estimates given were in­
creased from 10% to 75% of the true parameter. However, initial estimates 
of 150% resulted in algorithm divergence at all values of the modeled Dz, 
except the lowest (0.01 cm2/s). Here, the parameter estimates were seen to 
undergo a damped oscillation around the true parameter before converging. 
The slope of the residual function surface is smaller at Dz values greater 
than the true Dz, than it is for smaller values [Fig. 1(a)]. This nonsymmetry 
can be seen to increase for increasing values of the modeled Dz. This is to 
be expected, insofar as increasing dispersion levels tend to damp out the 
observed with the predicted component in the residual function [(11)]. It 
should be noted that decreasing distance between the boundaries will have 
a similar effect on system dynamics, and therefore, on convergence. 

For a Dz of zero, the predictive model will be at equilibrium at the initial 
condition for all time. As the estimated Dz decreases below the true Dz and 
approaches zero [Fig. 1(a)], the slope of each curve becomes increasingly 
shallow. This causes convergence to be much slower for initial guesses closer 
to zero and can be seen in Figs. 2(a), (b), and (c). For a zero slope, the 
algorithm will remain static at the corresponding parameter estimate. 

Nonconvergence at higher dispersion values may be attributed to a com­
bination of extreme solution stiffness of highly dispersive systems and the 
use of inadequate sampling schemes. The problem is exacerbated by the 
use of numerical approximations in the predictive model solution and the 
iterative estimation procedure. Under highly dispersive conditions, com­
pletely mixed conditions will be achieved almost instantaneously. As a re­
sult, the sampled data set may be excessively weighted with completely 
mixed concentration values, making the normal equation [(H)] virtually 
invariant in the vicinity of the true parameter value. The greater the amount 
of weight on steady-state conditions, the greater the region of damping in 
the normal equation. 

Advective-Dispersive Transport 
The model defined by (4), (5), and (6) was solved using a finite difference 

procedure. The time scale was set at the time required for traversal of the 
spatial domain due to the advective component alone, and discretized into 
50 equal steps. The spatial domain was discretized into 10 elements. This 
resulted in a regular grid of 500 elements, at which model-generated ob­
servations could be provided for any combination of specified Dz and vz. 

Residual Function Behavior 
To understand the relative importance of each parameter as a driving 

force toward a residual function minimum, the value of the residual function 
was evaluated over a range of Dz and vz. The residual is a function of both 
the predictive model parameters (Dz and w2)-and the observed data. Each 
plot in Fig. 3 corresponds to a different observed data set, derived from 
predictive model runs at the stated values of Dz and vz. For the ideal data 
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(a) 

( b ) 

FIG. 3. Residual values as Function of Dispersion Coefficient and Velocity at 
Modeled Peclet Numbers of: (a) 0.1; (b) 1.0; (c) 10; (d) 100 
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( c ) 

(d) 

FIG. 3 (Continued) 

585 

J. Environ. Eng. 1991.117:573-594.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
L

A
R

K
SO

N
 U

N
IV

E
R

SI
T

Y
 o

n 
05

/2
0/

14
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



sets presented, the residual function minimum should be zero at the stated 
values of Dz and vz. 

It can be seen in all plots that the true minimum is only a small depression 
in a valley running across the vz axis. This valley indicates that the estimation 
procedure should converge close to the correct vz, even if the estimated Dz 
is currently far from the correct value. This results in an observed inherent 
stability of the procedure with respect to vz. In addition to the similarity in 
the plots, it can be seen that several local minima exist in the vicinity of the 
true solution. 

The degree of exaggeration applied to the vz axis decreases with increasing 
advective dominance (higher Peclet-number values) indicating that as the 
system becomes more and more advective dominant, the sides of the valley 
become more shallow. This decrease in slope, which is the driving force for 
the Newton-Raphson process, leads to a decrease in rate of convergence in 
the vz direction. At Peclet numbers greater than 100, it can be seen that 
the value of the residual function may be almost invariant with changes in 
either parameter, making the system slowly convergent at best and highly 
unstable at worst. In dispersive dominant systems, the excessive slope of 
the valley walls appeared to cause the estimated vz to oscillate about the 
correct solution, permitting Dz to converge more rapidly than otherwise. 

Random-Noise Effect 
Fig. 4 shows the rate at which the parameters Dz and vz approach their 

optimum value under various random-noise levels and model-generated data 
sets. The tendency of the algorithm to become unstable and to oscillate at 
higher Peclet (Pe) numbers can be seen in Fig. 4(e). At relatively low 
random-noise levels (< ±5%), the effect is negligible, especially at the 
lower Peclet numbers (<75). The general nature of convergence of the Dz 
and vz with respect to each other is given in Fig. 4(e). Here, it is apparent 
that the direction taken by the estimation algorithm is dominated by the 
effect of the Dz term, while, at the same time, it is entirely possible to 
converge on a vz value and either wildly oscillate around the optimum 
dispersion coefficient or diverge from it completely. 

The ability of the procedure to converge to the correct parameter values 
is dependent on both the dynamics of the system and the amount of noise 
in the data. Fig. 5(a) shows the accuracy of the algorithm over a wide range 
of these two factors. The modeled Peclet number represents the parameter 
set used to generate the data sets, while the estimated parameters result 
from the application of the parameter estimation procedure on the data set. 
It should be noted that while the Peclet number is used here as a single 
representative parameter of the system, it is only indicative of the ratio of 
the advective to dispersive fluxes, it does not embody the system's dynamics. 
It is to be expected that as the overall magnitude of both flux terms increase, 
the dynamics of the system will increase. 

The Peclet numbers shown in Fig. 5(a) incorporate a wide range of the 
respective fluxes. The parameter estimation procedure proved to be tolerant 
to a large range in system dynamics. However, at high Peclet numbers, at 
which the system is highly advective dominant, it is apparent that the ability 
of the method to accurately estimate both Dz and vz becomes limited. This, 
however, is because of an inherent problem of excessive numerical disper­
sion associated with predictive numerical models of advective dominant 
systems. This numerical damping effect is exacerbated by the differencing 
strategy of the estimation procedure. 

586 

J. Environ. Eng. 1991.117:573-594.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
L

A
R

K
SO

N
 U

N
IV

E
R

SI
T

Y
 o

n 
05

/2
0/

14
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



14 
12 
10 
8 
6 
4 
2 
0 

12 
10 

-

-

,-r-r— 

t 

--: ' ' ' (a) 

Rand. D 
Z 

0% 
5% 
10% 

D = 10 c m 2 / s 
v"= 0.005 c m / s -

z ' 
V 

1 

" i I 

0.006 
0.005 
0.004 
0.003 
0.002 
0.001 
0.000 
0.06 
0.05 
0.04 
0.03 
0.02 
0.01 

0.00 
0.006 
0.005 
0.004 

- 0.003 
0.002 
0.001 
0.000 
0.06 
0.05 
0.04 
0.03 
0.02 

- 0.01 
0.00 
0.08 

10 15 
Iteration Count 

FIG. 4. Rate of Convergence of Algorithm at Various Random-Noise Levels. Mod­
eled Peclet Numbers: (a) 0.1; (b) 1; (c) 1; (d) 10; (e) 100 

Even at extremely high random-noise levels (±25%), the working range 
of the estimation procedure extends between Peclet numbers of 0.1 and 
100, sufficient for most environmental problems. Both the performance and 
working Peclet range of the algorithm improve as the noise level decreases. 
The random-noise levels depicted involve noise on both sides of the correct 
modeled concentration levels and, as such, are representative of a random-
noise band of twice the width of the value portrayed. 

Comparison of Figs. 5(a) and 5(b) shows that convergence is reached 
within 10 iterations, when under optimum conditions, system Peclet num­
bers in the range of 10, and random-noise levels less than 25%. However, 
as the system Peclet number tends away from this range, toward 100 or less 
than 1, the required number of iterations increases. The further the system 
Peclet number outside this range, the larger the number of iterations re-
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FIG. 5. Random-Noise Effect: (a) Correlation between Model-Generated Data Set 
Parameters and Parameter Estimation Results at Various Random-Noise Levels; 
(b) Final Iteration Count for Estimated Parameter 

quired. It is evident that if the estimation procedure takes more than 15 
iterations, it is more than likely diverging from the correct solution. How­
ever, an exception to this can be seen at the lower system Peclet numbers, 
of about 0.1. Here, after 30 iterations, the true parameter set is still being 
approached. This slow convergence can be attributed to the ±25% random-
noise level. A similar phenomenon can be seen at a Peclet number of 100 
and a random noise level of ± 10%. However, it is important to note that, 
in these cases, the range of application can be extended by increasing the 
computational effort. 

At Peclet numbers less the 0.01 and random-noise levels of ±25%, the 
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estimation procedure converges on a parameter set with a Peclet number 
of more than an order of magnitude greater than that of the true parameter 
set. This is the result of a combination of the high random-noise level and 
unbalanced weighting of data. At this low Peclet-number value, dispersion 
is the predominant transport mechanism. However, the time scale of the 
data used was obtained using the advective flux only. It is evident that this 
estimated time scale will exceed that of the actual problem. In this case, 
the dynamics of the dispersive system is accounted for by fewer data points 
than is desirable, and steady-state uniform concentrations predominate. The 
resulting spread in the data will accommodate a greater degree of advection 
than dispersion. 

It should be noted that while the estimation algorithm has been tested 
rigorously over a wide range of conditions, no attempt has been made to 
provide a theoretical evaluation of its convergence criteria. A rigorous study 
of convergence criteria for parabolic partial differential equations can be 
found in Kunisch and White (1985). 

Data-Sparcity Effect 
The effect of data sparcity was evaluated in a similar fashion as random 

noise. Fig. 6 shows the rate of convergence of the estimation procedure 
under various levels of data sparcity. It can be seen that the performance 
of the estimation algorithm is affected more by sparse data than random 
noise at lower Peclet numbers. This is to be expected. At lower Peclet 
numbers, the unbalanced weighting of steady-state conditions will be ex­
acerbated by decreasing the sampling frequency. 

Two specific trends can be seen in Fig. 6 with regard to algorithm per­
formance. First, increasing data sparcity tends to force the algorithm to 
estimate advective components that are higher than the true values. The 
same effect can be seen in the dispersive component in addition to making 
the convergence unstable. This can be related to the shape of the residual 
function surface (Fig. 3) in the direction of Dz. 

Limits for convergence are clearly defined in Fig. 7. Under the conditions 
used to generate the data sets (time scales and spatial and temporal sampling 
frequency) convergence to a reasonable estimate of the true Peclet number 
can be expected for systems with Peclet numbers between 0.1 and 100.0 
and at 375 observations (25% sparcity imposed on a 500-element data set). 
Algorithm performance may be improved by implementing a better sam­
pling scheme. For example, the range of Peclet numbers over which con­
vergence is ensured can be widened by increasing the sampling resolution 
when the system is more dynamic, and relaxing the resolution at other times. 
During the evaluation of the algorithm it was noted that considerably fewer 
observations were required for convergence if an accurate initial estimate 
of Dz was provided. It was found in general that the algorithm performance 
was more susceptible to small variations in Dz than is vz. 

It should be noted that while the algorithm may not converge for gross 
sample errors or data scarcity, under such conditions it is doubtful that 
manual model calibration would be feasible or practical. Further, the au-
tocalibration provided by the parameter estimation algorithm can be used 
to determine data requirements. 

CONCLUSIONS 

A generic parameter estimation framework was developed and tested on 
model-generated data for an indication of the limits of applicability. A one-
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FIG. 6. Rate of Convergence of Algorithm at Various Data-Sparcity Levels. Mod­
eled Peclet Numbers: (a) 0 .1; (b) 1 ; (c) 1 ; (d) 10; (e) 100 

parameter dispersive transport model and a two-parameter advective-dis-
persive transport model were used. The effect of sampling and measurement 
error on algorithm performance were evaluated. The following conclusions 
may be drawn from this study. 

The parameter estimation procedure was used successfully to param­
eterize a single-parameter dispersive transport model with a Dz range 
of 0.01 cm2/s-100.0 cm2/s. 
The parameter estimation procedure was used successfully to simulta­
neously extract Dz and vz values from an advective-dispersive particle 
transport model with a Peclet-number range of 0.1-1,000.0. 
The rate, and whether convergence will occur, is strongly dependent 
on the slope of the residual function surface at the location of the initial 
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parameter estimates. The possibility of convergence improves if the 
initial parameter estimate is made on the side of the residual surface 
from the true solution that has the steepest slope. 
The rate of convergence and the accuracy of the resulting estimated 
parameters degrades with increasing random noise and sparcity in the 
observed data. 
Convergence is rapid within a Peclet range of 1-100 and random-noise 
level of less than 25%. 
The spatial and temporal location of observations may affect both con­
vergence rates and the estimated parameter values, and must be co-
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ordinated with stiff areas in the solution domain to ensure accurate 
parameter estimates. 

• The technique can be used to determine predictive model inadequacies 
and data requirements (quantity, quality, and location) for model cal­
ibration. 

The parameter estimation algorithm was found to be an effective tool in 
model calibration. The algorithm converged under conditions known to 
confound standard model-calibration methods, although algorithm perform­
ance was degraded. 
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APPENDIX II. NOTATION 

The following symbols are used in this paper: 

mass concentration; 
mass concentration corrupted by introducing random noise; 
uniformly mixed concentration of the transported species; 
functional form describing observed concentrations; 
mass concentration at observation /; 
functional form describing predictive mathematical model; 
mass concentration, corresponding to observation i, predicted by 
mathematical model; 
dispersion coefficient; 
effective dispersion coefficient for particle category i; 

estimated dispersion coefficient at the kth iteration; 
vector of normal equations; 
normal equation for the /th parameter; 
matrix of 1st derivatives for Gauss-Newton technique; 
distance between boundaries; 
Jacobian matrix; 

C = 
C = 

r = 
c — 

' p r e d 

' pred, 

Dz 

DZi 

D1 
F 

f, 
G 
h 
J 
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m = number of parameters to be estimated; 
n = total number of derivatives; 

Pe = Peclet number; 
Pi = parameter i; 
Pk = vector of parameter values at iteration k; 
Sr = residual function; 
S'r = vector of derivatives of residual function with respect to each 

parameter (normal equations); 
S'r

k = vector of derivatives of residual function with respect to each 
parameter (normal equations) at iteration i; 

t = time; 
tj = time corresponding to observation i; 

vz = settling velocity; 
X = number of predictive model evaluations required per parameter 

estimation iteration; 
z = distance; 
Zj = distance corresponding to observation i; 

A£>2 = finite difference step for evaluating all derivatives with respect to 
dispersion coefficient; 

AP, = finite difference step for evaluating all derivatives with respect to 
parameter i; 

8 = impulse function; 
8* = vector of values to be added to parameter vector at /cth iteration 

to obtain better parameter estimates; 
(x = dynamic viscosity; and 
0 = n x 1 zero vector. 
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